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Abstract

The thermodynamic framework is outlined for a class of models, that involve the kinetic coupling of damage to

inelastic deformation. This class includes e�ects of microcrack±closure±reopening (MCR). The general conditions
for discontinuous bifurcations, which de®ne the onset of band-shaped localization, are given for the considered class
of models. Solutions for the band direction and the corresponding thermodynamic state are given for isotropic

elastoplastic response at plane stress, whereby two di�erent damage models that account for the MCR-e�ect in
tension-compression, are employed. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

A vast amount of work has been devoted to establishing the necessary conditions for the existence of
bifurcations of the incremental solution in solids involving rate-independent inelasticity, whereby the
secondary solution is characterized by (weak or strong) discontinuities along a characteristic surface.
One major reason for the interest in such (discontinuous) bifurcations is that they are frequently
considered as precursors of localized failure phenomena (such as shear bands) which preceed fracture
(cracks). At this junction we note that the traditional view on localization, is that a band (of unknown
width) is trapped between two parallel characteristic surfaces, across which a jump in the rate of
displacement gradient (or deformation gradient in the case of ®nite strains) is developing. Such a `weak'
discontinuity was assumed already by Hill (1962). In recent years, it has been shown that the same
conditions apply for the emergence of a `strong' discontinuity, which notion refers to an emerging
discontinuity in the displacement rate itself (and not only its gradient), cf Steinmann et al. (1997).

Explicit bifurcation results (including the critical direction of the characteristic surface and the
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corresponding value of the hardening/softening modulus) have been obtained in the literature for a

variety of elastic±plastic models. Such predictions range from the classic works by Rudnicki and Rice

(1975), Rice (1976) to the more recent contributions (generalizations) by Ottosen and Runesson (1991),

Runesson et al. (1991), Bigoni and Hueckel (1991) and Neilsen and Schreyer (1993). The theoretical

developments have been pursued in parallel with (and inspired by) achievements in the development of

®nite element algorithms for capturing localization phenomena, among which we may mention those of

Ortiz et al. (1987), De Borst and Sluys (1991), Larsson et al. (1993), Simo et al. (1993), and Larsson and

Runesson (1996).

By rephrasing elastic-damage models in a plasticity-like format, it is possible to use the results of, say,

Ottosen and Runesson (1991), to obtain bifurcation results, as shown by Rizzi et al. (1995, 1996).

Moreover, by coupling the development of damage kinetically to plastic deformation, cf Lemaitre (1992)

and references therein, it is possible to obtain closed form solutions for bandshaped localization (as

shown in this paper). Such results, although only for isotropic damage and restricting to a speci®c

model a priori, were presented by Doghri and Billardon (1995).

When the development of damage is isotropic, it induces a scalar reduction of the (elastic part of)

the free energy. However, it is well-known that such a simple model is not physically realistic. The

need to model microcrack±closure±reopening (MCR) e�ects requires the incorporation of stress-

induced anisotropy into the constitutive relations. A large number of such models have been

proposed since the concept of `maximum principal stress damage' was introduced by Hayhurst and

Leckie (1973). Other contributions are those of Leckie and Onat (1981), Sidoro� (1981), Betten

(1982), Ortiz (1985), Chow and Wang (1987), Murakami (1987), Yazdani and Schreyer (1988), Ju

(1990), Carol et al. (1994) to mention a few. A recent review by Carol and Willam (1996) of a

quite general class of models, comprising many of those mentioned above, has shown that most

existing models are not thermodynamically consistent, i.e. the stress is not derivable from a free

energy. Hence, energy can be dissipated or (even worse) produced within the `elastic' range (when

the damage variables are held constant). A thermodynamically consistent model is conveniently

contained within the framework of `generalized standard dissipative materials', originally proposed

by Halphen and Son (1975), if certain non-standard features are allowed. Such non-standard

extension refers to the necessity of invoking nonassociative dissipation rules w.r.t. the formulation of

feasible damage rule(s).

The ®rst purpose of this paper is to present a framework for models of plasticity coupled to damage

that include MCR e�ects. The second purpose of the paper is to carry out a bifurcation analysis for the

chosen class of models.

The paper is outlined as follows: a formulation of plasticity with kinetic coupling to damage is

presented in Section 2, whereby the state of damage is de®ned by a single (scalar) variable. The

`equivalent strain' and `e�ective stress' concepts are used, which means that virgin elastic properties

de®ne the e�ective stress for a given state of (elastic) strains, and this stress is used in the yield

criterion (rather than the actual stress). Three di�erent damage representations (one without and two

with the MCR-e�ect) are outlined in Section 3. All these representations employ a single scalar

damage variable. The condition for discontinuous bifurcations (band-shaped localization), for the

considered class of models, is given in Section 4 in terms of the critical band direction and the

corresponding state. In particular, we give closed-form solutions at plane stress for the standard

model of isotropic damage (without MCR-e�ect). Based on a speci®c model for metals (including the

von Mises yield criterion with nonlinear hardening and a particular damage law), we evaluate in

Section 5 the bifurcation results for semi-brittle as well as ductile damage development. In particular,

the e�ect of MCR on the bifurcation results is quanti®ed numerically. The small strain format is

employed throughout the paper.
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2. A generic formulation for plasticity coupled to damage

In order to restrict the formal complexity of the theoretical framework (yet allowing for useful
modelling of the MCR-e�ect) while adopting a quite general format of plasticity, we propose that the
free energy (per unit volume) C is decomposed into elastic and plastic parts as follows1

C
ÿ
eeee, k, a

� � Ce�eeee, a� �Cp�k� �1�

where eeee � eee ÿ eeep is the elastic part of the strain. We have introduced the following internal variables:
the plastic strain eeep, the hardening variables k, and the (scalar) damage variable a.2 The elastic part of
the free energy, Ce, is supposed to be convex in the elastic strains eeee (for any state, represented by a).
Moreover, Cp�k� is a convex function of k, but otherwise arbitrary (as yet).

From the Clausius±Duhem-Inequality (CDI), the following constitutive relations are obtained:

sss � @C
@eeee

, D � sss:_eeep � Kt _k � A_a e 0 �2�

where D is the rate of dissipation. In (2), we introduced the dissipative `hardening stresses' K and
`damage stress' A, that are energy-conjugated to k and a as follows:

K � ÿ@C
p

@k
, A � ÿ@C

e

@a
�3�

According to the `equivalent strain principle', cf Lemaitre (1992), we shall also de®ne the `e�ective'
stress ŝss as the stress that would result if no damage whatsoever had occurred, i.e.

ŝss � @Ĉ
e

@eeee
with Ĉ

e�eeee� �def
Ce�eeee, 0� �4�

It appears that sss � sss�eeee, a�, whereas ŝss � ŝss�eeee�. We shall now make the physically signi®cant assumption
that there exists a one-to-one relationship between sss and eeee for given a, i.e. it is formally possible to
invert the relationship sss � sss�eeee, a� to obtain eeee � eeee�sss, a�. Hence, we may express

ŝss�eeee� �def ŝss �sss, a� �5�

and this relationship will be employed subsequently.
According to the widely accepted `e�ective stress principle' of Continuum Damage Mechanics, we

now replace sss by ŝss in the yield function for the undamaged behavior. The convex set B of plastically
admissible states (in the generalized stress space of e�ective stresses and hardening stresses) is then
de®ned as

B � �ÿŝss, K� j Fÿŝss, K� E 0
	 �6�

where F is the yield function for the undamaged material.3 Clearly, such a de®nition of B relates to the
class of `generalized standard materials', de®ned by Halphen and Son (1975). However, this class of
materials is not su�ciently general for two reasons: (1) non-associative ¯ow rules need to be

1 This simpli®cation infers decoupling of elastic and plastic characteristics.
2 Underscore denotes matrix. Hence, k contains the components of tensors of even rank.
3 For simplicity, we assume henceforth that the yield and potential functions are smooth.
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accommodated for pressure-sensitive behavior (e.g. involving dilatancy e�ects). (2) The damage stress A
is not included as an argument of F, which calls for generalization in formulating the proper damage
law, that couples kinetically the development of damage to that of inelastic deformation, cf Lemaitre
(1992), Johansson and Runesson (1997).

To allow for nonassociative plastic ¯ow and hardening rules we introduce the dissipative potential F�

such that

_eeep � _m
@F�

@sss
� _mjjj�:M with jjj� �def @F�

@ ŝss
and M �def @ ŝss

@sss
�7�

where _m is the plastic multiplier. Clearly, one should choose F� in such a fashion that the CDI is
satis®ed, i.e. that thermodynamic admissibility is achieved. In order to de®ne the fourth-order
transformation M, we ®rst establish the rate form of (2) as

_sss � Ê
e
:eeee ÿ bbb_a with Ê

e �def @sss
@eeee
� @2Ce

@eeee 
 @eeee , bbb �def ÿ @sss
@a
� ÿ @2Ce

@eeee @a
�8�

From the de®nition of ŝss in (4) follows

_̂sss � Ee:_eee e with Ee �def @ ŝss
@eeee
� @2Ĉ

e

@eeee 
 @eeee �9�

Upon comparing (8) and (9), we conclude that

_̂sss �M: _sss �M:bbb_a with M � Ee:
ÿ
Ê

e
�ÿ1 �10�

Remark: Since Ee and Ê
e
are not necessarily coaxial in the general situation, nothing can be said

generally about the (possible) major symmetry of M. .

The hardening rules are introduced in the usual fashion as

_k � _m
@F�

@K
�11�

and we adopt the loading (Kuhn±Tucker complementary) conditions

_m e 0, F
ÿ
ŝss, K

�
E 0, _mF

ÿ
ŝss, K

� � 0 �12�
In order to complete the model concept, we choose the damage rule as

_a � _m
@U
@A

�13�

where U�A, a� is a positive scalar function that is monotonically increasing in both its arguments.
By combining (2), (3) with (7), (11), we obtain the constitutive relations

_̂sss � _̂ssse ÿ _mEe:jjj�:M with _̂ssse � Ee:_eee �14�

_K � ÿ _mH
@F�

@K
with H � @2Cp

@k@k
�15�
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We next give the corresponding continuum tangent sti�ness (CTS) tensor for the strain-controlled
format. Provided F � 0, we distinguish between plastic loading (L) and elastic unloading (U) via the
(usual) conditions

jjj:Ee:_eee > 0�L� jjj:Ee:_eee E 0 �U� with jjj �def @F
@ ŝss

�16�

and we ®rst obtain

_m � 1

h
jjj:Ee:_eee > 0 �L�, _m � 0 �U� �17�

where the modulus h > 0 is de®ned as

h � jjj: �E
e
:jjj� � �H with �H �

�
@F
@K

�t

H
@F�

@K
, �E

e � Ee:
ÿ
Ê

e
�ÿ1

:Ee �18�

Hence, we obtain Eep in the relation

_̂sss � Eep:_eee with Eep � Ee ÿ 1

h
�E

e
:jjj� 
 jjj:Ee �L� �19�

_̂sss � Ee:_eee�U� �20�
Upon using the relation (2), we obtain the CTS-tensor Ê

ep
in the relation

_sss � Ê
ep
:_eee with Ê

ep � Ê
e ÿ 1

h
Ee:ĵjj� 
 jjj:Ee �L� �21�

_sss � Ê
e
:_eee �U� �22�

where we have introduced the `e�ective ¯ow direction' ĵjj� as

ĵjj� �def jjj� � �Ee�ÿ1:bbb@U
@A

�23�

Remark: The `major' nonsymmetry of Ê
ep

stems from two sources: (a) the nonassociative ¯ow rule and
(b) the damage rule. .

As special cases of the general theory, we consider below three di�erent models of damage, which are
all based on isotropic elasticity for the virgin material, i.e.,

Ĉ
e�eeee � � G j eeee

dev j 2 �
Kb

2

ÿ
ee

vol

�2� G j eeee j 2 � L
ÿ
ee

vol

�2 �24�

where G, Kb (and L � Kb ÿ 2G=3) de®ne the constant elastic moduli.
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3. Speci®c damage representations

3.1. Model 1: Classical damage format (without MCR-e�ect)

The simplest possible damage representation, without any MCR-e�ect, can be described upon
introducing the elastic `damaged-strain' �eee e as follows:

�eee e �def �1ÿ a�1=2eeee �25�

whereby Ce is chosen as

Ce � Ĉ
e��eee e� � �1ÿ a�Ĉe�eeee � �26�

This gives the stress sss and the `damage stress' A as

sss � @C
@eeee
� �1ÿ a�ŝss with ŝss � 2Geeee

dev � Kbeeee
volddd �27�

A � ÿ@C
@a
� 1

6G
ŝ2e �

1

2Kb

ŝ2m with ŝe �
����
3

2

r
j ŝssdev j , ŝm � 1

3
ŝss:ddd �28�

The CTS-tensor Ê
e
is given as

Ê
e � @sss

@eeee
� �1ÿ a�Ee with Ee � 2GIdev � Kbddd
 ddd �29�

Here, Idev � Iÿ 1
3ddd
 ddd is the deviatoric identity tensor that projects any second-order tensor onto its

deviator, where I� 1
2�ddd 
 ddd � ddd 
 ddd� is the (symmetric) fourth-order identity tensor.4

Finally bbb is de®ned as

bbb � ÿ@sss
@a
� ŝss � sss

1ÿ a
�30�

Let us next consider the relations that are pertinent to plane stress, which is de®ned by _s i3� 0,
i � 1, 2, 3, whereby the coordinates x1, x2 are located in the plane of interest. Since si3 � ŝi3 � bi3 � 0
from (30), it follows that we may part-invert Ê

e
in (29) to obtain the plane±stress version5

Ê
e � 2G�1ÿ a�

�
I� n

1ÿ n
ddd
 ddd

�
,
ÿ
Ê

e
�ÿ1 �def 1

2G�1ÿ a�
�

Iÿ n
1� n

ddd
 ddd
�

�31�

in complete analogy with the situation without damage.
We also obtain

4 For second-order tensors u and v, we introduce the open products �u
v�abcd � uacvbd, �u
v�abcd � uadvbc.
5 With Greek indices referring to in-plane components, the Cartesian components of Ê

e
are

Ê
e

abgd � 2Ĝ

�
Iabgd � n

1ÿ n
dabdgd

�
with Iabgd � 1

2

ÿ
dagdbd � daddbg

�
Moreover, subscript `v' indicates `volumetric' in-plane, e.g. en � eaa. The true volumetric component is indicated by subscript `vol',

e.g. evol � ekk.
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ĵjj� � jjj� � jjjd with jjjd �def 1

2G

�
ŝssÿ 3n

1� n
ŝmddd

�
@U
@A

�32�

3.2. Model 2: MCR-e�ect in isotropic part of the elastic strain

A simpli®ed form of MCR is restricted to isotropic compression and extension, cf Yazdani and
Schreyer (1988), whereas deviatoric loading is assumed to always produce damage. Such a simple model
is justi®ed when microcracking is not associated with any directionality, which may be of relevance for a
polycrystalline microstructure with randomly oriented crack planes. Let us then introduce the `damaged'
elastic portion of the strain tensor �eee e

as follows:

�eee e � �1ÿ a�1=2eeee
dev � 1

3

ÿ
1ÿ g

ÿ
eeee

vol

�
a
�1=2eeee

volddd �33�

where g�x� is taken as a (smooth) monotonically increasing function such that

g�1� � 1, g� ÿ1� � g0, 0 E g0 E 1 �34�

Example 1: A typical example would be

g�x� � 1� g0
2
� 1ÿ g0

p
arctan

�
xÿ x0

xR

�
, xR > 0 �35�

which is depicted in Fig. 1(a) The `steepness' of this function is controlled by the (reference) value xR,
whereas the o�set value x0 represents the sensitivity for compression.

Example 2: A simpli®ed version of (35), which has been suggested by Lemaitre and Chaboche (1990),
Klarbring and Lundin (1997), is de®ned as

Fig. 1. (a) Smooth and (b) discontinuous MCR-functions.
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g�x� � g0 � �1ÿ g0�H�x� �36�
where H�x� is the Heaviside function,6 which is shown in Fig. 1(b).

The elastic part of the free energy is now chosen as

Ce � G j �eee e
dev j2 �

Kb

2

ÿ
�e e

vol

�2� G�1ÿ a� j eeee
dev j2 �

Kb

2

ÿ
1ÿ g

ÿ
ee

vol

�
a
�ÿ
ee

vol

�2 �37�

from which the nominal stress sss and the `damage' stress A are obtained:

sss � @C
@eeee
� 2G�1ÿ a�eeee

dev � Kb

ÿ
1ÿ g1

ÿ
ee

vol

�
a
�
ee

volddd �38�

A � ÿ@C
@a
� 1

6G
ŝ2e �

1

2Kb

g
ÿ
ee

vol

�
ŝ2m �39�

where the function g1�x� is de®ned as

g1�x� � g�x� � 1
2xg

0�x� �40�

Remark: In (39), we may express g in terms of ŝm via the simple change of arguments ee
vol � ŝm=Kb. .

As to Ê
e
, we obtain

Ê
e � @sss

@eeee
� 2G�1ÿ a�Idev � Kb

ÿ
1ÿ g2

ÿ
ee

vol

�
a
�
ddd
 ddd �41�

where the function g2�x�is de®ned as

g2�x� � g1�x� � xg 01�x� �42�
Finally, we obtain

bbb � ÿ@sss
@a
� ŝssdev � g1

ÿ
ee

vol

�
ŝmddd � sssdev

1ÿ a
� g1

ÿ
ee

vol

�
1ÿ g1

ÿ
ee

vol

�
a
smddd �43�

Special case: When the special case of g�x� in (36) is chosen, then g�x� � g1�x� � g2�x�, since
g 0�x� � 0, 8x 6� 0.

We next turn to plane stress. Even in this case it is possible to obtain a simple analytic expression for
Ê

e
, corresponding to that in (31). However, to avoid unnecessary technical complexity, we omit these

expressions here and simply conclude that the pertinent expression can be obtained by numerical part-
inversion of the relation in (41). Likewise, the appropriate plane stress version of Ê

ep
in (21) is

conveniently obtained in a numerical fashion.

Remark: For the present model ŝ33 6� 0 (although s33 � 0) at plane stress, unlike the case for the
classical Model 1. .

6 H�x� � 1 if x e 0, H�x� � 0 if x<0.

M. Ekh, K. Runesson / International Journal of Solids and Structures 37 (2000) 1975±19961982



3.3. Model 3: MCR-e�ect in principal elastic strains

A model that represents a simpli®ed version of the model by Ramtani (1990), is de®ned by the
following choice of the `damaged' elastic strain Ïeee e:

�eee e �def
X3
i�1

�e e
i gi with �e e

i �
ÿ
1ÿ g

ÿ
ee
i

�
a
�1=2ee

i �44�

where �e e
i are the principal values of �eee e

w.r.t. the eigendyad gi of eee
e, and g�x� is (still) the regularization

function with the properties in (34). Clearly, this choice relates the MCR-e�ect to the sign of the
principal elastic strains. For example, this model admits microcrack opening in the transverse direction
at uniaxial compression (splitting mode). If ee

i are distinct,7 then we may use Serrin's formula to
represent gi as follows:

gi �
1

di

�
�eeee �2ÿÿI1 ÿ ee

i

�
eeee � J

ee
i

ddd
�

�45�

where di is de®ned as

di �def
2
ÿ
ee
i

�2ÿI1ee
i � J

ÿ
ee
i

�ÿ1
, I1 �

X3
i�1

ee
i , J � ee

1e
e
2e

e
3 �46�

The elastic part of the free energy now becomes:

Ce � Gj�eee ej2 � L

2

ÿ
�e e

vol

�2� G
X3
i�1

ÿ
�e e
i

�2�L
2

 X3
i�1

�e e
i

!2

�47�

from which the nominal stress sss and the `damage' stress A are given as:

sss � @C
@eeee
�
X3
i�1

si
ÿ
ee
i , a

�
gi with si � @C

@ �e e
i

@ �e e
i

@ee
i

�48�

A � ÿ@C
@a
�
X3
i�1

Ai with Ai � ÿ@C
@ �e e

i

@ �e e
i

@a
�49�

where

@C
@ �e e

i

� 2G�e e
i � L

X3
j�1

�e e
j ,

@ �e e
i

@ee
i

� 1ÿ g1
ÿ
ee
i

�
aÿ

1ÿ g
ÿ
ee
i

�
a
�1=2 , @ �e e

i

@a
� ÿ ee

i g
ÿ
ee
i

�
2
ÿ
1ÿ g

ÿ
ee
i

�
a
�1=2 �50�

It is emphasized that sss and eeee are coaxial and that sss is an isotropic function of eeee.

7 A slight perturbation is made whenever ee
i are not distinct.
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As to the computation of Ê
e
, we obtain

Ê
e �

X3
i�1

gi�gi 
 gi � � siGi with Gi �def @gi
@eeee

�51�

where the coe�cients gi�ee
i , a� are given as

gi � �2G� L�
 
@ �e e

i

@ee
i

!2

� @C
@ �e e

i

g3
ÿ
a, ee

i

� �52�

with

g3
ÿ
a, ee

i

� � 1
2ag

0ÿee
i

�ÿ
1ÿ g1

ÿ
ee
i

�
a
�ÿ ag 01

ÿ
ee
i

�ÿ
1ÿ g

ÿ
ee
i

�
a
�ÿ

1ÿ g
ÿ
ee
i

�
a
�3=2 �53�

After some manipulations, we obtain:

Gi � 1

di

0@2Iee ÿ ÿI1 ÿ ee
i

�
I�

X3
j�1

ÿ
I1 ÿ ee

i ÿ 2ee
j

�
gj 
 gj

1A �54�

where we introduced the fourth-order tensor

Ieeee �def 1

4

ÿ
ddd �
 eeee � eeee �
 ddd� ddd 
 eeee � eeee 
 ddd

� �55�

Remark: It appears that Ieeee is the generalization of I � Iddd. .

Finally bbb is de®ned as

bbb � ÿ@sss
@a
� ÿ

X3
j�1

@C
@ �e e

i

@2 �e e
i

@ee
i @a
� @2C
@ �e e

i @a
@ �e e

i

@ee
i

�56�

where

@2C
@ee

i @a
� 2G

@ �e e
i

@a
� L

X3
j�1

@ �e e
j

@a
,

@ 2 �e e
i

@ee
i @a
� 1

2

g
ÿ
ee
i

�ÿ 2g1
ÿ
ee
i

�� g
ÿ
ee
i

�
g1
ÿ
ee
i

�
aÿ

1ÿ g
ÿ
ee
i

�
a
�3=2 �57�

In the case of plane stress, we use numerical part-inversion to obtain the pertinent plane stress versions
of Ê

e
and Ê

ep
.

4. Bifurcation of incremental solution

4.1. Preliminaries

In order to assess the possibility for bifurcation of the incremental solution at a certain
(thermodynamic) state, we may put forward arguments in close agreement with those of
Runesson et al. (1991). Hence, we shall examine the spectral properties of the characteristic tensor
Q̂ep de®ned as
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Q̂ep � n � Êep � n � Q̂e ÿ 1

h
â� 
 a with Q̂e � n � Êe � n �58�

where n is the unit normal vector of the characteristic surface. The vectors a�n� and â��n� are given as

a � jjj:Ee � n, â� � ĵjj�:Ee � n �59�
The smallest eigenvalue l�1� of Q̂ep, with respect to the metric de®ned by the `damaged' elastic tensor
Q̂e�n�Êe � n, is given as

l�1��n� � 1ÿ 1

h
Y�n� with h � Z� �H �60�

where we have introduced the abbreviated notation

Y�n� � a�n� � P̂e�n� � â��n�, Z � jjj: �E e:jjj� �61�
and P̂

e � �Q̂e�ÿ1. At any given thermodynamic state, s, we de®ne the localization direction �n�s� such that

�n � arg

�
min
jnj�1

l�1��n�
�
� arg

�
max
jnj�1

Y�n�
�

�62�

where the relation (60) was used. The critical state, scr, corresponding to the critical localization
direction ncr � �n �scr�, must satisfy the relation l�1�� �n� � 0, i.e.

�H � Zÿ Y� �n � � 0 �63�
where it is realized that �H , Y and Z are, in general, functions of the state (apart from �n )8. Eqn (63) is
not su�cient in general to determine the critical state scr. Rather, this state is achieved along a (given)
loading path in stress, strain or mixed stress±strain space. After integration of the pertinent constitutive
relations, we may check whether the relation (63) is satis®ed. If that is the case, the critical state scr is
found, and ncr can be computed. It is emphasized, once again, that the critical direction ncr depends,
generally, on the loading path.

Depending on the actual constitutive properties, three principally di�erent situations may be
encountered:

Situation 1: The ®rst situation is that bifurcation is possible at the very onset of yielding (and
development of damage), i.e. when a � 0. The corresponding value of �H cr is denoted �H cr,0 and it is
obtained directly from (63) with a � 0 and with known stress state at initial yielding. We remark that no
integration of the constitutive relations will be necessary in this particular situation, which is typical for
semi-brittle response.

Situation 2. The second situation is de®ned by �H 0 < �H cr,0, where we used the notation �H0 for the
initial value of �H (at the onset of yielding). This means that the critical state is traversed already
at the onset of yielding, and it is possible to ®nd many solutions n to (63) such that l�1��n� � 0 [without
satisfying (62)].

8 We should write �H � �H �s�, Y � Y�s, �n � and Z � Z�s�.
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Situation 3: The third situation is characterized by �H0 > �H cr,0 and �H continuously decreasing along the
considered loading path. As a special case, �H is constant (like for linear isotropic hardening of the von
Mises yield surface). It is then possible to obtain real solutions �H cr and acr only after development of
damage �acr > 0�, which is typical for ductile response.

4.2. Model 1: Solution for plane stress

It is possible to establish closed-form expressions for ncr, Hcr and acr from (62) and (63) for this model
as direct extensions of those of plasticity without damage, given by Runesson et al. (1991). The
pertinent developments are reviewed brie¯y here.

From (31) it follows that

Q̂
e � �1ÿ a�G

�
ddd� 1� n

1ÿ n
n
 n

�
, P̂

e �def
�

Q̂
e
�ÿ1
� 1

�1ÿ a�G

�
dddÿ 1� n

2
n
 n

�
�64�

and

a � 2G

�
jjj � n� n

1ÿ n
jvn

�
, â� � 2G

�
ĵjj� � n� n

1ÿ v
ĵ�nn

�
�65�

where jv and ĵ�v are the `volumetric' parts in plane stress of jjj and ĵjj�, respectively. These expressions
were given in (32).

We shall now make the important assumption that j and j� possess the same principal directions,
and that these directions are also identical to those of sss. Because of the plane stress condition, it
follows that two (out of the three) principal directions are located in the plane of interest. The
corresponding principal values are labelled j1, j2 and j�1, j

�
2 (and s1, s2) in such a way that j1 e j2

(without any restriction). However, we assume that this labeling of coordinate axes will also infer that
j�1 e j�2 and s1 e s2.

9 By (32), we also conclude that jd
1 e jd

2 and, hence, ĵ�1 e ĵ�2.

Remark: The magnitude of the out-of-plane components j3 and j�3 (and s3 � 0) are not related to the
magnitude of the in-plane components. .

From (32)2 we now obtain the principal components

jd
1 �

1

E
�ŝ1 ÿ nŝ2�@U

@A
, jd

2 �
1

E
� ÿ nŝ1 � ŝ2�@U

@A
�66�

where E � 2G�1� n�.

Subsequently, we shall restrict the analysis to the (main) situation where j1 > j2 (and j�1 > j�2).
Following the developments in Runesson et al. (1991), we ®rst de®ne the scalars

ĉa � �1� n�
h
�jv ÿ ja�

ÿ
ĵ�1 ÿ ĵ�2

�� ÿĵ�v ÿ ĵ�a
�
�j1 ÿ j2�

i
, a � 1, 2 �67�

9 This result follows trivially if F and F� are isotropic functions of ŝ.
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Remark: It appears that ĉa are straightforward generalizations of ca de®ned for plasticity without
damage in Runesson et al. (1991). However, an important di�erence is that the components are
interchanged such that ĉ2 and ĉ1 generalize c1 and c2, respectively, where

ca � ja

ÿ
j�1 ÿ j�2

�� j�a�j1 ÿ j2�, a � 1, 2 �68�
This change of notation is made for convenience in order to facilitate a direct comparison with the more
general situation of quasi-isotropic damage development considered in the next section of this paper. .

Three di�erent cases are distinguished:

Case 1: When the conditions ĉ1 E 0 and ĉ2 e 0 are satis®ed, then we obtain the critical directions n21
and n22 from

n21 �
ĉ2

ĉ2 ÿ ĉ1
, n22 � ÿ

ĉ1
ĉ2 ÿ ĉ1

9 tan2 ycr � ÿ ĉ2
ĉ1

�69�

where y denotes the angle in the x1x2-plane from the x2-axis to the normal vector �n1, n2�.

Case 2: When ĉ2 E 0 (while ĉ1 E 0), we obtain the solution ycr � 08.

Case 3: When ĉ1 e 0 (while ĉ2 e 0), we obtain ycr � 908.

In each case, we obtain the critical values �H cr and acr from the relation

�H ÿ Y�acr � � Z�acr � � 0 �70�
where

Y � 2G

1ÿ a

h
s1n

2
1 � s2n

2
2 ÿ g�2�

ÿ
j1n

2
1 � j2n

2
2

�ÿ
ĵ�1n

2
1 � ĵ�2n

2
2

�� g�3�jvĵ
�
v

i
�71�

Z � 2G

1ÿ a

�
j1j

�
1 � j2j

�
2 � g�4�jvj

�
v

�
�72�

with the notation

sa � 2jaĵ
�
a � g�1�

ÿ
jvĵ

�
a � jaĵ

�
v

�
, no sum on a �73�

g�1� � n, g�2� � 1� n, g�3� � n2

1ÿ n
, g�4� � n

1ÿ n
�74�

4.3. Model 2 and Model 3: Solution for plane stress

It is necessary to resort to numerical evaluation of the bifurcation criterion in the general situation
(when it is not possible to take advantage of the speci®c structure of the acoustic tensor). The following
algorithm is then employed:

ÐCompute the pertinent plane stress version of Ê
e
and Ê

ep
by part-inversion. Then, obtain Q̂

e
and Q̂

ep
.

ÐCompute l�1��n� in (60) and obtain �n from (62). If l�1�� �n� � 0, then the critical state has been
identi®ed and ncr � �n .

Remark: In fact, closed-form expressions for ncr can be obtained for Model 2 (similarly to those of
Model 1). However, in order to avoid the technical complexity, we refrain from giving the details
here. .
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5. Speci®c model for metals

5.1. von Mises plasticity with nonlinear hardening coupled to damage

A model that has been proposed for the analysis of LCF of metals and alloys is based on the von
Mises yield surface with nonlinear mixed isotropic and kinematic hardening, originally proposed by
Armstrong and Frederick (1966). We then choose

Cp�k, bbb� � 1
2rHk2 � 1

2
�1ÿ r�Hb2e with be �

���
2
3

q
jbbbdevj �75�

where k and bbb are the isotropic and kinematic hardening variables, respectively. Moreover H is the
initial hardening modulus in uniaxial stress, whereas r is a parameter that controls the relation between
isotropic and kinematic hardening: r = 0 represents purely kinematic hardening, whereas r=1
represents purely isotropic hardening. The von Mises yield function is de®ned as

F � t̂e ÿ sy ÿ K, t̂e �
���
3
2

q
jt̂ttdevj with t̂tt � ŝssÿ B �76�

where we have introduced the dissipative stresses, associated with isotropic and kinematic hardening, as:

K � ÿrHk, B � ÿ 2
3
�1ÿ r�Hbbb �77�

The potential function F� is chosen as

F� � F� K 2

2K1
� B2

e

2B1
with Be �

���
3
2

q
jBdevj �78�

and it appears that D e 0 is satis®ed with this choice. The moduli K1 and B1 are saturation values of
isotropic and kinematic hardening, respectively. With (18), we then obtain

�H � rH

�
1ÿ K

K1

�
� �1ÿ r�H

�
1ÿ 3

2t̂eB1
Ãtttdev:Bdev

�
�79�

To simplify the analysis (but without restricting the generality of the approach), we consider henceforth
only isotropic nonlinear hardening, i.e. r=1. Consequently, only monotonic loading paths are
investigated. We then obtain from (76) and (78)

j1 � j�1 �
1

2ŝe

�2ŝ1 ÿ ŝ2�, j2 � j�2 �
1

2ŝe

�2ŝ2 ÿ ŝ1 � �80�

where

ŝe �
������������������������������
ŝ21 � ŝ22 ÿ ŝ1ŝ2

q
�81�

5.2. Scalar damage law

We choose

U � f�a�A2

2S
with f�a� � 1

�1ÿ a�m �82�
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where S is the damage modulus and m is the damage exponent. The choice m 6� 1 represents a trivial,
but quite important, generalization of the classical damage law suggested originally by Lemaitre (1971).
Upon evaluating the response of a tension bar, which is assumed to deform in a homogeneous fashion
in the softening regime and behave perfectly plastic in the absence of damage, we may relate the damage
modulus S to the non-dimensional ductility measure s and the exponent m as

S � ms

2
sye2y, s � ef

ey

ÿ 1 �83�

where ey is the yield strain �� sy=E � and ef is the fracture strain (when s � 0). By allowing from m>1,
the model can be tuned to mimic real material behavior in quite a realistic fashion.

Remark: Although the damage law in (82) looks the same for the di�erent damage formats, there is a
di�erence w.r.t. the de®nition of A. .

To complete the model de®nition, we choose the function g�x� as in (36).

6. Bifurcation results

6.1. Evaluation of bifurcation conditions at the onset of yielding

At the onset of yielding (corresponding to Situation 1 in Section 4.1) there is no damage, i.e. a � 0.
Moreover, K = 0 so that �H � H and se � sy.

To get the complete picture of the bifurcation characteristics, results are given for varying values of
the ductility measure s. Lemaitre (1971) has given material data for steel with ductility in the range
s 2 �3, 178�, whereby the lower and upper bounds correspond to very brittle and very ductile damage
development, respectively. For any position on the initial yield surface (de®ned by the angle j from the
biaxial compression state in principal strain space, cf. Fig. 2), we may calculate ycr and the
corresponding Hcr,0 (� �H cr,0 since K = 0 initially). These results are shown in Figs. 2±7 for the three
di�erent models (discussed above).

It appears that the result for very ductile damage �s � 178� is virtually identical to that of no damage
development independently of the damage model used. However, brittle damage �s � 3� promotes
localization signi®cantly (in the hardening range), and these results are strongly model-dependent.

6.2. Evaluation of bifurcation conditions for prescribed hardening

Let us consider the situation in which H > Hcr,0 (for a speci®c strain path), where H is a ®xed
hardening modulus, and where Hcr,0 is the critical value of the hardening modulus at the onset of
yielding along the speci®c path under consideration. It is noted that giving H a prescribed value does
not infer that �H is ®xed, since �H will vanish when the saturation K � K1 has been reached for very
large strain, according to (79). For the present analysis we choose K1=sy � 0:3. Let �Hcr,0�max denote the
maximal value of Hcr,0 along the entire initial yield surface. For example, for Model 1 (isotropic
damage), it appears from Fig. 5 that �Hcr,0�max=2G10:275 for s=3, while �Hcr,0�max=2G10:00462 for
s � 178. Hence, for given H > �Hcr,0�max development of damage will always be necessary in order to
achieve a state where bifurcation can exist. Clearly, this state depends on the actual ductility measure s.
Obviously, the analysis necessitates numerical integration of the constitutive relations along the
prescribed straight load paths (de®ned by j).
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Fig. 2. Variation of ycr along initial yield surface for di�erent ductility s (isotropic damage: Model 1 or Model 2, 3 with g0 � 1).

Fig. 3. Variation of ycr along initial yield surface for di�erent ductility s (Model 2, g0 � 0:2).

Fig. 4. Variation of ycr along initial yield surface for di�erent ductility s (Model 3, g0 � 0:2).
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Fig. 5. Variation of Hcr,0 along initial yield surface for di�erent ductility s (isotropic damage: Model 1 or Model 2, 3 with g0 � 1).

Fig. 6. Variation of Hcr,0 along initial yield surface for di�erent ductility s (Model 2, g0 � 0:2).

Fig. 7. Variation of Hcr,0 along initial yield surface for di�erent ductility s (Model, 3, g0 � 0:2).
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It is possible to construct the `bifurcation surface' in stress space (similar to the initial yield surface
and the saturation surface). However, it is more illuminatg to represent the bifurcation surface in strain
space. These surfaces are shown (together with the initial yield surface in strain space) in Figs. 8±10 for
the three considered damage models. A brittle response (s=3) and a more ductile response (s=30) are
shown. (Although not depicted here due to limited space, results for s=30 are very close to those for
very ductile behavior represented by s=178).

Fig. 8. Bifurcation surfaces for H � max�Hcr,0� (ÐÐ) and H � 1:2G > max�Hcr,0� (- -) outside the initial yield surface (±) for di�erent

ductility s (isotropic damage: Model 1 or Model, 2, 3 with g0 � 1).

Fig. 9. Bifurcation surfaces for H � max�Hcr,0� (ÐÐ) and H � 1:2G > max�Hcr,0� �- -� outside the initial yield surface (±) for di�er-

ent ductility s (Model 2, g0 � 0:2).
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Remark: The bifurcation surface is path-independent only in the sense that it is unique for prescribed
straight strain paths. .

We may also investigate how the critical value acr depends on the particular choice of H, and these
results are shown in Figs. 11±13. Due to space limitations we omit presentation of the corresponding
critical orientation ycr. Generally, the in¯uence on ycr of the ductility measure s is somewhat greater
than for bifurcation at initial yielding (as shown in Figs. 2±4).

Fig. 10. Bifurcation surfaces for H � max�Hcr,0� (ÐÐ) and H � 1:2G > max�Hcr,0� �- -� outside the initial yield surface (±) for di�er-

ent ductility s (Model g0 � 0:2).

Fig. 11. Variation of acr along the bifurcation surface for H � max�Hcr,0� (ÐÐ) and H � 1:2G > max�Hcr,0� �- -� and for di�erent

ductility s (isotropic damage: Model 1 or Model 2,3 with g0 � 1).
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7. Concluding remarks

In this paper we have outlined the thermodynamic framework for (a single scalar) damage that is
kinetically coupled to plastic deformation, and the corresponding CTS-tensor is derived. Even when a
scalar damage variable is employed, it is possible to go beyond the trivial case of isotopic damage to
incorporate MCR-e�ects. Moreover, it seems quite straightforward to generalize the formulation to
tensorial damage, although the actual evaluation (for example, of the CTS-tensor) will be considerably
more technical.

The general conditions for discontinuous bifurcations, which de®ne the onset of band-shaped
localization, were established along the route laid out by Runesson et al. (1991). It was demonstrated

Fig. 12. Variation of acr along the bifurcation surface for H � max�Hcr,0� (ÐÐ) and H � 1:2G > max�Hcr,0� �- -� and for di�erent

ductility s (Model 2, g0 � 0:2).

Fig. 13. Variation of acr along the bifurcation surface for H � max�Hcr,0� (ÐÐ) and H � 1:2G > max�Hcr,0� �- -� and for di�erent

ductility s (Model 3, g0 � 0:2).

M. Ekh, K. Runesson / International Journal of Solids and Structures 37 (2000) 1975±19961994



that it is possible to obtain closed-form expressions for the critical band direction and the corresponding
state (in terms of �H and a) under the plane stress condition and in the presence of damage. Numerical
results have been presented for a speci®c model, based on the von Mises criterion with nonlinear
(saturation) hardening and a damage law that generalizes that of Lemaitre (1992). The following speci®c
conclusions were reached:

As to the critical angle ycr, this seems to be quite insensitive to the rate of damaged evolution, i.e.,
whether the response is ductile or brittle. In fact, the critical orientation virtually coincides with that
obtained from pure elastoplasticity (without any damage). However, the investigation was limited to the
situation at the onset of yielding.

As to the critical hardening �H cr, this is signi®cantly in¯uenced by the ductility characteristics, such
that bifurcation in the hardening regime is obtained for brittle behavior. However, it is con®rmed that
the results for pure plasticity is approached for very large ductility (low rate of damage development).
More speci®cally, bifurcation will occur at the state of saturation (where �H � 0) in such a case.
Moreover, for high rate of damage, the MCR-e�ect becomes quite pronounced, which is shown
manifested in the form of smaller value of �H cr in the compressive regime. The characteristic behavior is
depicted also in Figs. 11±13, which show how the critical amount of damage depends on the ductility
after plastic deformation has developed. Clearly, the underlying analysis requires the proper numerical
integration of the appropriate evolution equations.
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